翻訳と辞書
Words near each other
・ Ramanthuruthu
・ Ramanuja
・ Ramanuja Devnathan
・ Ramanuja Kavirayar
・ Ramanuja Vijayaraghavan
・ Ramanujacharya (film)
・ Ramanujam vanishing theorem
・ Ramanujam Varatharaja Perumal
・ Ramanujam–Samuel theorem
・ Ramanujan (disambiguation)
・ Ramanujan (film)
・ Ramanujan graph
・ Ramanujan Institute for Advanced Study in Mathematics
・ Ramanujan IT City
・ Ramanujan Mathematical Society
Ramanujan prime
・ Ramanujan Prize
・ Ramanujan summation
・ Ramanujan tau function
・ Ramanujan theta function
・ Ramanujan's congruences
・ Ramanujan's lost notebook
・ Ramanujan's master theorem
・ Ramanujan's sum
・ Ramanujan's ternary quadratic form
・ Ramanujan–Nagell equation
・ Ramanujan–Petersson conjecture
・ Ramanujan–Sato series
・ Ramanujan–Soldner constant
・ Ramanujapur


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ramanujan prime : ウィキペディア英語版
Ramanujan prime

In mathematics, a Ramanujan prime is a prime number that satisfies a result proven by Srinivasa Ramanujan relating to the prime-counting function.
==Origins and definition==
In 1919, Ramanujan published a new proof of Bertrand's postulate which, as he notes, was first proved by Chebyshev. At the end of the two-page published paper, Ramanujan derived a generalized result, and that is:
: \pi(x) - \pi(x/2) ≥ 1, 2, 3, 4, 5, ... for all ''x'' ≥ 2, 11, 17, 29, 41, ... respectively,
where \pi(x) is the prime-counting function, equal to the number of primes less than or equal to ''x''.
The converse of this result is the definition of Ramanujan primes:
:The ''n''th Ramanujan prime is the least integer ''Rn'' for which \pi(x) - \pi(x/2) ≥ ''n'', for all ''x'' ≥ ''Rn''.
The first five Ramanujan primes are thus 2, 11, 17, 29, and 41. Equivalently,
:Ramanujan primes are the least integers ''Rn'' for which there are at least ''n'' primes between ''x'' and ''x''/2 for all ''x'' ≥ ''Rn''.
Note that the integer ''Rn'' is necessarily a prime number: \pi(x) - \pi(x/2) and, hence, \pi(x) must increase by obtaining another prime at ''x'' = ''Rn''. Since \pi(x) - \pi(x/2) can increase by at most 1,
: \pi(''Rn'') - \pi(''Rn''/2) = n.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ramanujan prime」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.